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Abs_act

Linearized Euler equations are used to

simulate supersonic jet noise generation and

propagation. Special attention is given to

boundary treatment. The resulting solution

is stable and nearly free from boundary
reflections without the need for artificial

dissipation, filtering, or a sponge layer.

The computed solution is in good agreement

with theory and observation and is much

less CPU-intensive as compared to large-
eddy simulations.

2_.Immahu_m

The full, compressible Navier-Stokes
equations govern the process of sound

generation and propagation to the far field.

However, the resolution requirement for

high-Reynolds-number turbulent flows
makes direct numerical simulation (DNS)

impractical due to current computer
limitations.

Therefore, Mankbadi et. al. 1,2 proposed the
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extension of the large-eddy simulation
(LES) approach for use in the prediction of

sound generation and propagation. In this

approach, the Navier-Stokes equations are

filtered into large-scale components, which

are calculated directly, and small,

unresolved components, which are modeled.

The only limitation of an LES approach as

opposed to DNS is that sound radiation by
the unresolved scales are not accounted for.

However, it is believed that the large
scales are more efficient than smaller ones

for radiating sound. Thus, LES is currently

the most accurate approach to jet noise

predictions. However, the LES approach is

still CPU-intensive, particularly for three-

dimensional computations of both the near
and far fields.

The present work is concerned with

exploring the use of the less computer-

demanding linearized Euler equations

(LEE) for jet noise predictions. The LEE

approach neglects both viscosity and
nonlinear effects. The viscous effects can be

neglected since the large-scale dynamics in

free shear flows are essentially inviscid

(e.g, Ref. 3). Nonlinearity, however, seems

to be important (e.g., Ref. 4).

Yet, much of the physics can be obtained by
considering the linear equations. Several

attempts have succeeded in studying the

physics of jet noise based on a simplified

form of the linearized Euler Equations (e.g.,

Ref. 5-8). The linearized Euler equations



describe simultaneously both the near field
where the sound is generated and the
propagation of sound to the far field. As
such, the problem of matching the near
field to the far field does not arise. The

linearized Euler equations fully account for
non-parallel flow effects and for the
simultaneous presence of non-discrete
frequencies.

Special attention is given to the boundary
treatment in order to avoid the generation

of spurious waves that could render the
computed solution entirely unacceptable.
Several proposals for boundary treatments
are considered, and used where

appropriate. The treatment adopted in
this work resulted in a stable solution

nearly free from reflections without the
need to add artificial dissipation,
filtering, or sponge layers. The computed
solution is found to be in good agreement
with theory and observations.

2. Governing_ E_aualicms

Starting from the full Navier-Stokes
equations in conservative form, neglecting
viscosity, and linearizing about a mean
flow (U,V), the axisymmetric linearized
Euler equations may be written in
cylindrical coordinates as:

-_-+_+ - O)r o_r r

where:

(2)
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Here
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and

(p,_,o,O=[p',(,:,u)',(p_)',(_)'].(8)

In this notation, U is the axial mean

velocity and V is the radial mean velocity.

Velocities are normalized by the jet exit
velocity, time by D/Ue, density by the
mean exit value, and pressure by peUe 2.
Here, D is the nozzle diameter, and the
subscript 'e' denotes the exit value at the
centerline.

3. Mean Flow

This work uses the analytical functions
proposed by Tam and Burton s to fit the
experimental data of Troutt and
McLaughlin 9 in the three streamwise
regimes of a Mach 2.1 jet: the potential
core, transitional, and fully developed

regimes.

In the potential core, ranging from 0 < x/D
< 5, the half-Gaussian (profile I) is used to

describe the axial mean flow velocity:



U=I forr <h

forr> h

b(x) j j

In the

profile

(9)

transitional region, 5 < x/D < 8,
II is used:

V(r) = _17 O_Urdr
rJ Ox

0

(13)

The above profiles are used to describe the
mean flow up to maximum radius rmax = h +
3b. For r > rm_x

U = Ue(x) for r < h

U=Uc(x)exp[-ln(2)(r-h(x)]21b(x) ) J
(10)

forr>h

In the fully developed regime, x/D > 8,
profile III is used:

] (11)

where b(x) is the half-width of the
annular mixing layer and is fitted to the
experimental data. The radius of the
uniform core h(x) and the centerline

velocity Uc(x) are related to b(x) through
the conservation of momentum:

U=0

v=Y..___
r

(14)

where V. is the uniform radial velocity in

the outer regime. By assuming the total
temperature to be uniform, the relation
between the static temperature and the
axial mean flow velocity is obtained. The
equation of state is then used to obtain the
mean density in terms of the static
temperature.

The computational grid for this problem
extends axially from x/D = 2.5 to x/D = 35,
using 196 equally spaced points (25 points
per wavelength). Due to the steep mean-
flow gradients encountered at the jet exit,
the computational grid was begun at an
axial distance x/D = 2.5 from the actual jet
exit.

PU2rd r 1 (12)
20

For profile I, Uc = 1, and hence equation (12)
is used to obtain h(x) in terms of b(x). For
profile III, equation (12) is used to obtain
Uc(x) in terms of b(x). For profile II, b(x)
and h(x) are obtained by using a cubic spline
fit that matches the values of b(x) and its

derivative to that of profiles I and III and
likewise for h(x).

In the radial direction, the grid begins just
above the centerline (r/D = 0.005) and
extends to r/D = 16, with a total of 381

points. The grid is uniform from the
centerline to r/D = 1, with a spacing of
Ar/D = 0.01. At this point, the grid is
stretched geometrically by a factor of 1.01,
until the radial spacing is equal to the
axial spacing. After this point, the grid is
uniform again to the outer radial boundary.

aa, Numerical Algorithm

Invoking the boundary-layer-type
approximation to the mean flow equations
shows that the mean pressure can be taken
to be uniform in the jet. Under such

assumptions, one can show that the
continuity equation for the mean flow
reduces to that of the incompressible flow,
which is used to obtain the radial flow

velocity V(r) as:

The code is a modified split MacCormack
solver, which is second order accurate in

time and fourth order accurate in space.
This extension of the MacCormack scheme

is known as the 2-4 scheme, and was

developed by Gottleib and Turkel 1°. This
scheme has been used successfully on a wide
range of fluid and aeroacoustics problems 11-
24 Sankar, Reddy, and Hariharan 2s have



evaluated this scheme for aeroacoustics

applications. The solution procedure is as
follows:

In the present code, the operator is split

into separate radial and axial
contributions:

q.÷2 =LxLrL_Lxqn (15)

Each operator consists of a predictor and a

corrector step. Each step uses one-sided

differencing:

Predictor:

1

n+--q 2 __an _ 7F i -8Fi_ 1 + Fi_2)" (16)

Corrector:

( n+1
l|q" + q 2

q.+1

and likewise for the radial direction. The

sweep directions are reversed between

operators to avoid biasing. At the

computational boundaries, flux quantities
outside the boundaries are needed to

compute the spatial derivatives, and these
can be obtained using third-order

extrapolation based on data from the
interior of the domain.

_, Boundary. Treatment

Special attention is given herein to
boundary treatment in order to avoid non-

physical oscillations that can render the

computed oscillating field unacceptable.

Several boundary treatments were
considered. 26,27 The boundary treatments
discussed below were found to be stable,

non-reflecting, and suitable for the present

jet computations.

5.1 Inflow Boundary. Conditions

disturbance and radiation regimes, which

are treated differently as outlined below.

5,1,1 Inflow Disturbance At the inflow

boundary, a small disturbance is introduced.

This disturbance is assumed to be mainly

hydrodynamic in nature, and is specified
from the centerline to r/D = 2.

To a first approximation, the inflow
disturbance is assumed to be small such that

the linear stability theory applies. A

normal mode decomposition for the
disturbance is assumed in the form:

[u',v', p',p']=

Re[?l(r),_(r),j(r),j(r)]exp{i(ax- eat)} (18)

The goveming equations reduce to the Orr-

Sommerfeld equation, which is solved to

obtain the complex wave number a as the

eigenvalue corresponding to the frequency ca

and the radial functions (-)as the

corresponding eigenfunctions. The mean

flow discussed in Section 3 is used in solving

the Orr-Sommerfeld equation.

This solution extends to r/D = 1. A curve is

fitted to smoothly set the disturbance to

zero by r/D = 2.

The effect of the inflow disturbance is

added to the computed flow variables at

the inflow boundary at each time step:

(Qt)boundary :(Qt )_m,_,a +(Qt )d/aurban_(19)

5.1.2 Hydrodynamic Disturbance Re,me

In the hydrodynamic disturbance regime

(r/D < 2), the Thompson inflow boundary
condition 2s,29 is used. In the Thompson

analysis, the axial operator is decomposed
into four 1-D characteristics. At a subsonic

inflow boundary, three of these

characteristics are incoming, and are set to

zero for a non-reflective boundary
condition, while the fourth characteristic

is outgoing and is computed from the flow
solution:

At the inflow boundary (x -- 0), the radial

boundary is split into hydrodynamic

4
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The four characteristic equations are then
solved together to obtain the time
derivatives of the variables at the inflow

boundary. For a supersonic inflow, all

characteristics are incoming, and are all set
to zero.

Due to the specified disturbance at the

inflow boundary, the Thompson inflow
boundary condition exhibited a problem in
which some disturbances were convected in

a radial direction and remained on the

boundary for the rest of the computation.

To alleviate this, the mean radial velocity

was set to zero on the boundary, and

smoothly raised to the proper value by x/D
=5.7.

5.1.3 Radiation regime In the radiation
v

regime (r/D > 2), the conventional acoustic

radiation condition applies:

(21)

where:

Q'=

LP J

R=_x2 +r 2

]
(22)

and M is the local Mach number. The

spatial derivatives which appear in Eq.
(21) are evaluated in an identical manner

as the inner flow derivatives.

5.2 Outflow Boundary. Condition8

The outflow treatment is based on the

asymptotic analysis of the linearized

equations as given by Tam and Webb. 3° The

pressure condition is the same as that

obtained by Bayliss and Turke131, Enquest
and Majda 32, and Hariharan and

Hagstrom 33, namely:

'=-V(a Xp'_+rp' r (23)

However, for updating the rest of the

primitive variables, Tam and Webb have
shown that the momentum and continuity

equations should be used to account for the

presence of entropy and vorticity waves at

the outflow boundary. The spatial

differencing used in the inner code is

employed to evaluate the derivatives
which appear in Eq. (23).

For the outflow regime of large radius and a
local Mach number less than 0.01, the

outflow condition is replaced by the
radiation condition of Section 5.1.3.

It must be noted that the Tam and Webb

outflow boundary condition is formulated

with an assumption that the mean flow is

uniform, which is not true for the jet

outflow. However, the results given by this
boundary condition were quite good, with

very little reflection.

5.3 Outer Radial BQ_mdary Con_iition

At the outer radial boundary (r = rmax, 0 < x

< Xmax), the radiation boundary condition of
Section 5.1.3 is used.

5.4 Centerline Treatment

For an axisymmetric problem, the boundary
condition at r = 0 can be stated as:

0 (24)

5



v'=o (25)

To implement this boundary condition
numerically, the fluxes are projected to
ghost points across the centerline in an
appropriate manner. The centerline
treatment for a non-axisymmetric case is not
obvious, and is addressed in a separate
paper by Shih, et. al.34

6. Resul_

Results are presented for the axisymmetric
flow and acoustic field of a supersonic jet (M
= 2.1), unheated with a uniform stagnation

temperature of 270 ° Kelvin. The Reynolds
number of the mean flow is 70,000, and the

jet is excited at a Strouhal number of 0.2.
This case was tested experimentally by
Troutt and McLaughlin 9 , and theoretically
by Tam and Burton. s

which is in close agreement with the
theoretical prediction of Tam and Burton,
which were obtained via matched

asymptotic expansion. The experimental
results of Troutt and McLaughlin, in which

an initially, laminar jet was excited with a
disturbance at St = 0.2. As pointed out by
Troutt and McLaughlin, the measured sound
source was found to be composed of
axisymmetric and helical modes, with the
latter more dominant than the former. The

results presented here are only for the
axisymmetric mode, but still the
qualitative agreement between the
calculation and experiment is evident.

Figure 5 shows the root-mean-square
pressure disturbance along the r/D = 8.0
line, compared to the experiment of Troutt
and McLaughlin. The results show a
qualitative similarity, with an axial shift
of the maximum disturbance.

6.1 The Global Field

The global field of the jet is shown in

Figures 1-7. Figure 1 shows the oscillating
pressure field with the appropriate
boundary treatment indicated on the figure.
The solution is stable and clean from

boundary reflections. Close to the axis, we
note the oscillatory nature of the sound
source, which will be shown in more detail

in figures 8-12. The sound source radiates
sound that seems to peak at an angle
influenced by the streamwise position
where the disturbance reaches a maximum.

Figure 2 shows the instantaneous
distribution of u', v', dilation, and

vorticity. We note that the vorticity is
confined to the near field, showing that the
calculated outer field is a truly irrotational
acoustic field.

Figure 3 shows contours of the maximum and
root-mean-square values of the pressure
oscillation. The field resembles that of a

quadrupole with preferred forward
emission.

The directivity of sound is shown in Figure
4. The peak occurs around 26 degrees,

The radial decay of the pressure and axial
velocity disturbance field is shown in
figures 6 and 7, indicating a 1/R decay, as
expected for the acoustic field.

Figure 8 shows the spectra of the sound
pressure field at x/D = 22.3 and r/D = 11.8.
The dominant frequency is that of the input
disturbance.

Figure 9 shows the sound pressure level
distribution in the far field for the present
work, the axisymmetric mode of Tam and
Burton, and the experimental measurements
of Troutt and McLaughlin. It is seen that

the graphs are all qualitatively similar,
but the present results show an upstream
axial shift of the lobes when compared to
Tam and Burton's previous work. The lobes
are shifted a distance of x/D ---2.5 from Tam

and Burton's analytical calculation, and
x/D = 1.5 from Troutt and McLauglin's
experimental results.

6.2 The Near Field

The near field is shown in more detail in

figures 10-14.

Instantaneous distributions of the pressure
disturbance in the shear layer are shown in



Figure 10. The effects of the boundary
conditions on the pressure disturbance are

evident in this figure; reflections from the
front and rear boundaries are in evidence.

Figure 11 shows instantaneous distributions

of the axial velocity disturbance along the
r/D = .5 line for several time levels. The

boundary conditions seem to have much less

effect on the axial velocity disturbances.
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Figure 1
Illustration of Oscillating Pressure Field

and Boundary Conditions

(Mjet = 2.1; St = 0.2; axisymmetric mode)

Figure 2a
Instantaneous Distribution of the Axial

Velocity Disturbance Field

(M_t = 2.1; St = 0.2; axisymmetric mode)

Figure 2b
Instantaneous Distribution of the Radial

Velocity Disturbance Field

(Miet = 2.1; St -- 0.2; axisymmetric mode)



Figure 2c
Instantaneous Distribution of the

Disturbance Velocity Dilatation

(Mjet = 2.1; St = 0.2; axisymmetric mode)

Figure 3b
Root-Mean-Square Values of the Pressure

Oscillation

(Mjet = 2.1; St - 0.2; axisymmeffic mode)

Figure 2d
Instantaneous Distribution of the

Disturbance Vorticity

(M_ = 2.1; St -- 0.2; axisymmetric mode)
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Oscillation
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Comparison of SPL levels along the
r/D = 8.0 line

(Miet - 2.1; St = 0.2; ax/symmetr/c mode)
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Figure 6
Radial Decay of the Pressure Disturbance

in the Far Field

(Mjet = 2.1; St = 0.2; axisymmetric mode)
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Radial Decay of the Axial Velocity
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(Mjet = 2.1; St = 0.2; axisymmetric mode)
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Figure 9b
SPL contours for Tam and Burton

calculation

(Miet = 2.11 St = 0.2; axisymmetric mode)
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Far Field Pressure Spectra at (20,23.5)

(Mie t = 2.1; St = 0.2; axisymmetric mode)
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Figure 9c

SPL contours for Troutt and McLaughlin

experiment

(Miet = 2.1; St = 0.2)
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Figure 10
Instantaneous Pressure Disturbance along

the r/D = 0.5 line

(Miet= 2.1; St = 0.2; axisymmelric mode)
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Figure 13
RMS Pressure Disturbance in the Shear

Layer (r/D = 0.5)
(M_ = 2.1; St : 0.2; axisymmetric mode)
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Figure 11
Instantaneous Axial Velocity Disturbance

along the r/D - 0_ line

(M_ : 2.1; St: 0.2; axisymmetric mode)
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Figure 14
Dis_bution of the RMS axial momentum

disturbance in the shear layer

(M_ = 2.1; St = 0.2; axisymmetric mode)
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Figure 12
Near Field Pressure Spectra in the Shear

Layer

(Mje, = 2.1; St = 0.2; axisymmetric mode)
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